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WEAK EVAPORATION (CONDENSATION) WITH AN 
ARBITRARY EVAPORATION COEFFICIENT IN GASES 
W I T H  A CONSTANT FREQUENCY O F  M O L E C U L A R  
C O L L I S I O N S  

A. V. Latyshev and A. A. Yushkanov UDC 533.72 

We have obtained an exact solution of  the problem on determination of  temperature and concentration 
jumps of  a rarefied elementaJw. (monoatomic) gas in the case o f  weak evaporation fi'om the gas-con- 

densed phase interface into the half-space of a saturated vapor. Use is made of  a model kinetic equa- 

tion with a collision integral in the BGK (Bhatnagar, Gross, and Krook) form. Accurate coefficients of  
the temperature and concentration jumps are found. It is shown that at low evaporation coefficients the 

dependence of the concentration of  the vapor on its evaporation (concentration) rate at a large dis- 
tance fi'om the interface is linear even at low (as compared to sonic) vapor velocities. 

The problem on weak evaporation has attracted attention for several decades. This is associated with 
the theoretical significance of the problem and numerous practical applications. This problem has been investi- 
gated with use of both the analytical methods [1-4] for model kinetic equations and the approximate and nu- 
merical methods for a complete Boltzmann equation [5-8]. In all the mentioned works, the case where the 
evaporation coefficient is equal to unity has been studied. An exact solution with the use of the model kinetic 
equations was obtained comparatively recently in our works [1, 4]. 

The importance of allowing for the evaporation coefficient is related, in particular, also to the fact that 
according to experinaental data [9] it can vary within wide limits from 0.006 to 1. The evaporation coefficient 
was taken into consideration in the works devoted to strong evaporation (condensation) when the Mach number 
is about unity and in connection with heterogeneous chemical reactions [10-14]. In these works, the possibility 
of different regimes depending on the accommodation coefficient was not studied; particular emphasis was 
placed on obtaining numerical and approximate solutions. 

In the present work, an analytical solution of the half-spatial boundary-value problem on weak evapo- 
ration (condensation) is obtained for the first time for the case where the evaporation coefficient acquires arbi- 
trary values from 0 to 1. Weak evaporation (condensation) occurs at a rate of U > 0 (U < 0) from a plane 
gas-condensed phase interface into the half-space of a saturated vapor. Use is made of the model kinetic equa- 
tion with the collision integral in the BGK form. Separation of the variables leads to a characteristic equation, 
the eigenvectors of which are in the space of generalized functions. It is established that the initial boundary- 
value problem is expanded in terms of these vectors. A proof of the expansion reduces to a solution of the 
vector boundary-value Riemann-Hilbert problem [15]. At first the corresponding homogeneous boundary-value 
problem is solved. At this point, the so-called fundamental matrix function is constructed, which is used for 
solving an inhomogeneous problem. The general solution of the latter is found in the class of meromorphic 
functions. From the solvability conditions, we find the coefficients of discrete and continuous spectra of the 
expansion of the solution of the boundary-value problem, including exact formulas for calculation of a tem- 
perature jump and dependences of the vapor concentration near the wall and at a large distance from it on the 
evaporation coefficient and on the evaporation or condensation rate. From the formulas obtained it is seen that 
at small values of the evaporation coefficient the dependence of the vapor concentration on the rate U is non- 
linear even at small (as compared to sonic) rates of vapor evaporation (condensation). 
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Let us introduce the Cartesian coordinate system with the center on the gas--condensed phase interface 

and the x axis directed perpendicularly to the interface in the direction o f  the gas. At the interface, the proc- 

esses o f  evaporation or condensation occur, as a result o f  which there exists the mean mass velocity U of  the 
gas (vapor) in the direction from or to the interface. This velocity is considered to be much lower than the 
sonic one, thus allowing linearization of  the kinetic equation. 

In the general case, the problem of  boundary conditions is rather complicated [16]. As the wall condi- 
tion, we take 

.f+ (0, v) = af,~ (T s, v) + (1 - a ) f 0  (T s, v) ,  v, > 0 .  (1) 

Here, t~ is the evaporation coefficient, i.e., the amount o f  molecules incident onto the wall which are condensed 

on it; 1-ct is, respectively, the amount of  molecules incident onto the wall which are reflected from it. In this 
approach, the evaporation and condensation coefficients are assumed to be equal. In condition (1): 

f . 3 / 2  - 2 " 
| m ) ( mv ) 

fo (T~, ,~ = n ° r  ( G  v) 
"~ ~ p i sa 'S  

(ns is the saturated-vapor concentration at temperature Ts, n0 = n(0) is the concentration of  the vapor molecules 
on the wall (more exactly, in the immediate vicinity o f  it)). The quantity no is determined from the tightness 
condition (wall impermeability) for the reflected molecules 

(1 - a) ; ,:,. [fo (L, v) O+ (v,.) + f -  (0, v) O+ (- L)] d~'' = O,  (2) 

where 0+(x) is the Heaviside function: 0+(x) = 1, x > 0; 0+(x) = 0, x < 0. 
We seek the distribution function in the form 

.f=f~ (T~, v) (1 + ~o), .f~ = ~ L , .  (3) 

where n i = n(oo)  is the concentration of  the gas molecules at infinity to be determined. 
Substituting (3) into (1) we obtain an equation from which we find 

t1 s - n  0.4_ n o - - n  i cp + (0, c) = a , c ,  > 0 .  (4) 
It i n i 

The quantities no and ni are unknown and must be determined from a solution of  the kinetic equation. Next, 

we will find the relation between no and ni from the condition of  equality of  mass flows on the wall and at a 
large distance from it. For this, we use the law of  mass flow conservation 

r (  3/2 j" exp ( -  c 2) c x tp (x, c) d~c = C O = cons t .  (5) 

Substituting the asymptotics of  the distribution function at a large distance from the wall into this equality 

tPas (x, c) = 2Uc  v + E t (c 2 - 3 / 2 ) ,  (6) 

we find that 
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C 0 = U .  (7)  

Here, E t = T i / T  s - 1 is the sought temperature jump, Ti = T(oo). 
Now we use the impermeability condition (2) for the reflected molecules. In this equality we calculate 

the integral of the first term 

no ~ .  
,:, s,, ,,) 0+ (v,) a v- 

2 ~ '  2 k T  s ' 

consequently, passing to a dimensionless molecular velocity, we obtain 

n o 
- - S f -  (0,  C) c r 0+ ( -  c 0 dc 

2~u-u " ' 

whence with the use of (1), (4), (5), and (7) we have 

n---~s - n(---! = 2 , ~ - U .  (8) 
n i n i o~ 

Thus, the problem consists of solving the BGK equation [1-4] 

3q )  n - 3 / 2  cx-~7 x + qo (x, c) = .[ exp (-  c 2) k (c, c') tp (x, c') ar~c" (9) 

with the boundary conditions 

,4) (0, c) = e , ,  c,. > 0 ; 

(10) 
cp(x ,c )=%.~(x ,c )+o(1) ,  x ~ + o o ,  c . ,<0 ,  

where the function q3a.~ is determined by equality (6) and e,, is the right-hand side of condition (4). 
If we seek a solution of problem (9), (10) in the form 

q) = ~ .  + tq (x, la) + (c 2 - 3 / 2 )  h 2 (x, g ) ,  g = c~ ,  

we obtain the vector boundary-value problem for the column vector h = [hi h2] t (t is the transposition): 

Oh 1 (11) 
g-~x + h (x, l a ) = ~ -  I K0 (g' g') h (x, g ' )r ig ' ,  

h (O,,u) = O, l a > 0 ,  (12) 

h ( x , g ) = h a s ( X , g ) + o ( 1 ) ,  x - - - ) o o ,  g < 0 ;  

2Ug - e,i 
h~, (x, Ix) = et • 

. [  . o 
K 0 ( g , g ) =  E + 2 g g '  0 

(13) 
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K (~t) = 2 ' 
z (it) ~ 1 (it)2 + 

here E is the unit matrix, 0 = [0 0] t is the null vector, and /(it) = I t2_ 1/2. 
Separation of  variables hn(x, g) = exp ( -a /q)F( r l ,  It) allows Eq. (11) to be reduced to the characteristic 

one 

1 
(n - It) F (n, It) = ~ nE 

with unit normalization 

I exp ( -  1~2) K (It) F (q, It) dIt = E .  

From the characteristic equation with allowance for the normalization at 1] ~ (-oo, +oo) we find the eigenvec- 
tors of the continuous spectrum in the space of  generalized functions [17] 

1 F ('q, ~ ) =-~-- P 1 

~ - it 
E + exp (1] 2) B (q) 8 (q - I t) .  

Here Px  -1 is the distribution, i.e., the main value of the integral of  Y -1, ~(X) is the Dirac delta function, B(TI) 
= K-l(rl)A(q),  A(z) is the dispersion matrix, and A(z) = ~.(z)K(z) + P(z); here 

P (z) = 
1/3 1/3 _ + 

1 I exp ( -  z 2) 
~,(z) = 1 + z ~ -  x - z  d"c. 

We will establish that a solution of problem (1 l)-(12) can be represented in the form of expansion in 
terms of the eigenvectors 

h Cr, It) = has (it) + I e x p  ( - x / q )  F (rl, It) a (1"1) d q ,  
o 

(14) 

where a(q)  is the coefficient of  the continuous spectrum, i.e., the unknown vector function 

2Uit - en 
has (it) = et " 

Using boundary conditions (12) and (13), we pass from expansion (14) to the singular integral equation 
with the Cauchy kernel 

1 ! rla UI) drl + exp (it2) B (It) a (g) = 0 ,  It > 0 .  has (It) + ~ q - g 
(15) 
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Introduce the unknown vector function 

(16) 
1 ! r l a ( r l l d r  I 

N (z) = ~ -  q - z 

and reduce Eq. (15) to the inhomogeneous vector boundary-value Riemann-Hilbert problem 

B + (g) [N + (It) + has (tx)] = B- (Ix) [N- (It) + has (g)], IX > 0 ,  (17) 

with the matrix coefficient G(IJ) = [A+(B)]-lA-(IX) = [B+(ILt)]-]B-(It). At first we will consider the corresponding 
homogeneous boundary-value problem (the problem of coefficient factorization) 

G(It)=X+(IX) [ X - ( I x ) ]  -1 , I x > 0 ,  (18)  

where X(z) is the unknown matrix function that is analytical in the complex plane with a branch cut along the 
positive semiaxis unlike the matrix G(z) that is piecewise-analytical in the upper and lower half-planes with a 
branch cut along the entire real axis. 

We seek a solution of problem (18) in the form X(z) = S ( z ) U ( z ) g " - l ( z ) ,  where S(z) is the matrix leading 
to the diagonal form of the matrix B(z); U(z) = diag {Ul(z)), U2(z} is the new unknown diagonal matrix. From 
the definition of the diagonalizing matrix it follows that 

S -] (z) B (z) S (z) = f2 (z) = diag {f21 (z), ~2 (z)}, 

where 

~ j  (z) = ~ (z) + ~- - z - + ~ +  (-1 r(z) , j =1 ,2 "  

r(z)=Nfq(z),  q (z )=  z 2 - ~  + 4 .  

Substituting X(z) into (18), we arrive at the matrix boundary-value problem equivalent to two scalar problems: 

U; (ix)=exp(- ZiOj(ix)) Uf-(B), j=1,2,  I t > 0 ,  (19) 

where 0j{I a) = arg E2](B) is the regular branch of the argument of the function f2)-(B) fixed by the condition 0i(0) 
= 0 ,  j =  1,2. 

We note that the matrix function X(z) is analytical in the complex plane with the branch cuts Ft and 
F 2 connecting the points of branching, i.e., nulls of the polynomial q(z) in the upper and lower half-planes. 
Thus, for the matrix function X(z) to be single-valued, the condition X+(T) = X-(l:), I: • F, F = F1 u 1-" 2, must 
be fulfilled on these branch cuts or 

U + ('C) IS + (I;)] -1 S -  (2;) -- [S + (17)] -1 S -  ( I ; ) ,  1: • F .  

Taking into consideration that 

[S+(z)]-I S-('I~)= 10 ; 
1 ' 

from the previous condition we obtain two more problems which, unlike scalar problems (19), are vector 
boundary-value ones: 

532 



U ( ( z ) = U  2("¢), U [ ( z ) = U 2  + ( ' 0 ,  z ~ r .  (20) 

Thus, it is necessary to construct a solution that would simultaneously satisfy the scalar problems (19) 
on the main branch cut and vector boundary-value problems (20) on additional branch cuts. The methods for 
solving such problems, which are also encountered in the theory of radiation transfer (see, e.g., [18]), were 
developed in [1-4]. Therefore, we give a solution of problems (19) and (20) without derivation: 

Uj (z) = exp [- A (z) + (-1)J r (z) (B (z) - R (z))] , j = l , 2 .  

Here 

if A (z) = ~ [01 (~) + 0._ ('c) - 2~] "~-zd"--~, 

0 

)"o 

R (z) = j" dz 
r (~) ( z  - z )  ' 

0 

1 I 0 ~ ( ~ ) - 0  2(z )  d'~ 

0 

the point xo is found from the Jacobi inversion problem for elliptic integrals 

± 1 o,(+>-o2(+>.++i 
2n r (~1 r (z) 

0 0 

= 0 .  

Thus, the matrix X(z) is constructed. With the aid of (18) we transform (17) to the problem of determination 
of an analytic vector function by its zero step 

IX + ([[1)] -1 [N + (It) + has (~)] = [X- (~)]-1 [N-  (gt) + has (It)], gt > 0 ,  

the general solution of which has the form 

N (z) = - has (z) + X (z) • (z) ; (21) 

where O(z) is the column vector with elements 

(X-I ~-1 
• l (z)  = ~ z  + % + - - ,  • 2 (z)  = [3Lz + [3 0 + - -  ; 

z - x 0 z - x 0 

here ai  and [3i (i = -1 ,  0.1) are arbitrary constants. 
Based on (16) and (21) and using the Sokhotskii formula, we will find the coefficient of the continuous 

spectrum 

2 ~ i q a  (q) = IX + (q) - X -  (q)] • (q) .  

All free parameters of solution (21) are determined uniquely from the conditions of elimination of its 
special features. Determination of these parameters completes the proof of expansion (14). As a result of deter- 
mination of all of the free parameters of solution (21), we arrive at a formula for the dependence of the tem- 

perature jump on the evaporation (condensation) rate U 
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e t = 2U Yt, Yt = 4Xo exp ( -  2B 2 - 2R2) D ,  

and also at the dependence of  the concentration on U: 

n s - -  r l  O rl 0 - -  H i 

H i H i 
- -  = -  2 U y n ,  y , , = - A  l + B  3 + R  3 + x  0 (1 + 8D) - " I t .  (22) 

Here 

D -  
3 x o / 2  - 1.2 (0 )  - r ( 0 )  r (Xo) 

r (x o) [," (x o) + x o + r (0)] 2 ' 

1 I A 1 = - " ~  [01 (1:) + 0 2 (1:) - 2/t] d1:, 

o 

1 01 (1:) -- 02 (17) zk_ 1 617 8k=-  f ,m 
0 

x° k -  1 

R k = _  f 1: d.t, 
o 

k = 2 , 3 .  

Numerical calculations show that Yt = -0 .22436 and y,, = -0.84350.  It is reasonable to compare these accurate 

values of  the coefficients with the approximate ones from [7]: Yt = -0.223375 and y,, = -0.842645.  
Now from Eqs. (8) and (22) we find that 

n i 

n~ cz+2U[~-n+ot ( ' ,~ -n+y, , ) ]  ' 

n o ~ [l + 2 U  ("~-~ + y,,)] (23) 

n~ ct + 2U [g-~-~ + 7,,] 

We consider two limiting cases: 

(1) U << ct; here 

2U (24) n O -  r/i -- 1 - - -  [~-~  + t~ (~ -~  +y , , ) ]  , 
H s ?l s ( X  

i.e., the vapor concentration ni at a large distance from the surface slightly differs f rom the saturated-vapor 
concentration ns; consequently, here a purely linear (with respect to the evaporation/condensation rate) variant 

of  the problem is realized; 
(2) t~ << U; here 

. . . .  ~ 1 +  
n s 27,~-~ U '  ns ~ ' 

(25) 

i.e., the vapor concentration at a large distance from the surface tends to zero with the evaporation coefficient 

t~ tending to zero, since at low values o f  the evaporation coefficient the gas outflow from the surface (propor- 
tional to the rate U) is not compensated by the inflow of  vapor molecules due to evaporation. 
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From formula (24) it follows that in case (1) the processes of evaporation and condensation are sym- 
metrical. At the same time, in case (2), as is seen from formula (15), a limitingly asymmetrical variant of the 
process, which occurs only in evaporation, is realized. Indeed, for the condensation process the rate U is nega- 
tive. From (25) it follows that in this case the molecular concentration at a large distance from the wall must 
be negative. 

We note that the dependence of the vapor concentration on the evaporation or condensation rate at a 
large distance from the interface is, generally speaking, nonlinear (see formula (23)). This does not contradict 
the use of the linearized collision integral since under the conditions where the evaporation or condensation 
rate is much lower than the sonic one, a correction for the equilibrium distribution function j~ remains small. 
However, in this case, the equilibrium distribution function 3] at infinity (at a large distance from the wall) can 
considerably differ from the equilibrium distribution function fs corresponding to the saturated-vapor concentra- 
tion, i.e., ni can be much smaller than ns. 

This work was carried out with financial support from the Russian Fund for Fundamental Research 
(project 99-01-00336). 

N O T A T I O N  

jS~, equilibrium distribution function; fs, distribution function of the saturated vapor; 3~, distribution func- 
tion of the vapor at a large distance from the wall; m, molecular mass; v, dimensional velocity of the mole- 
cules; c, dimensionless velocity of the molecules, c = ~ c v ;  k, Boltzmann constant; ~, evaporation 
coefficient; Ts, temperature of the saturated vapor; ns, concentration of the saturated vapor; n, vapor concentra- 
tion near the wall; hi, vapor concentration at a large distance from the wall. Subscripts: s, surface; i, infinity; 
as, asymptotics; t, temperature; n, concentration. 
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